Liên Mạng VietNam || GiaiTri.com | GiaiTriLove.com | GiaiTriChat.com | LoiNhac.com Đăng Nhập | Gia Nhập
Tìm kiếm: Tựa truyện Tác giả Cả hai

   Tìm theo mẫu tự: # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Danh sách tác giả    Truyện đã lưu lại (0
Home >> Khoa Học >> Giai điệu giây và bản giao hưởng vũ trụ

  Cùng một tác giả
Không có truyện nào


  Tìm truyện theo thể loại

  Tìm kiếm

Xin điền tựa đề hoặc tác giả cần tìm vào ô này

  Liệt kê truyện theo chủ đề

  Liệt kê truyện theo tác giả
Số lần xem: 84448 |  Bình chọn:   |    Lưu lại   ||     Khổ chữ: [ 1, 2, 3

Giai điệu giây và bản giao hưởng vũ trụ
Brian Greene

Chương 9 - 3

Con đường đi tới thực nghiệm

Không có những đột phá công nghệ vĩ đại, chúng ta sẽ không bao giờ có thể khám phá được những thang chiều dài nhỏ bé cần thiết để thấy được các dây một cách trực tiếp. Hiện nay các nhà vật lý có thể thăm dò tới những khoảng cách cỡ một phần tỷ tỷ mét nhờ các máy gia tốc có kích thước tới vài ba dặm. Việc thăm dò tới những khoảng cách còn nhỏ hơn nữa đòi hỏi phải có những năng lượng cao hơn, mà điều này có nghĩa là cần có những máy gia tốc lớn hơn có khả năng tập trung toàn bộ năng lượng vào một hạt duy nhất. Vì chiều dài Planck nhỏ hơn khoảng cách mà hiện nay chúng ta có thể tiếp cận tới khoảng 17 bậc độ lớn, nên nếu dùng công nghệ hiện nay, thì các máy gia tốc phải có kích thước to bằng cả một thiên hà mới thấy được cả dây một cách riêng rẽ.

Thực tế, Shmuel Nussinov thuộc Đại học Tel Aviv đã chứng tỏ rằng sự đánh giá thô dựa trên những tính toán đơn thuần theo tỷ lệ đó xem ra hơi quá lạc quan; những nghiên cứu cẩn thận hơn của ông chỉ ra rằng, để thấy được các dây, chúng ta cần phải có một máy gia tốc to bằng cả vũ trụ. (Năng lượng cần thiết để thăm dò vật chất ở chiều dài Planck cỡ một ngàn kilôoát giờ, năng lượng cần để chạy một máy điều hòa khoảng một trăm giờ, và như vậy cũng không có gì là ghê gớm lắm. Nhưng cái thách thức đối với trình độ vào một hạt duy nhất, đó là tập trung toàn bộ năng lượng đó vào một hạt duy nhất, tức là vào một dây duy nhất). Vì quốc hội Mỹ cuối cùng đã hủy bỏ việc cấp ngân sách cho việc xây dựng Máy Siêu Va chạm siêu dẫn, một máy gia tốc có chu vi cỡ 86km, nên người ta cũng chẳng trông mong gì có được một máy gia tốc có khả năng thăm dò tới chiều dài Planck. Nếu giờ đây chúng ta có ý định kiểm chứng lý thuyết dây bằng thực nghiệm thì chỉ có thể bằng con đường gián tiếp mà thôi. Cụ thể là chúng ta sẽ cần phải tìm ra những hệ quả của lý thuyết dây có thể quan sát được ở thang chiều dài lớn hơn nhiều so với kích thước của chính các dây [1].

Trong bài báo có tính đột phá của mình, Candelas, Horowitz, Strominger và Witten đã đi những bước đầu tiên trên con đường hướng tới mục tiêu đó. Họ không chỉ phát hiện ra rằng các chiều phụ trong lý thuyết dây cần phải cuộn lại thành các không gian Calabi-Yau, mà còn suy ra một số hệ quả về các mode dao động khả dĩ của dây. Một trong số những kết quả tối quan trọng của họ là đã làm sáng ra những giải pháp ngoạn mục và bất ngờ mà lý thuyết dây đã đưa ra đối với nhiều bài toán còn tồn đọng khá lâu của vật lý hạt.

Chúng ta hãy nhớ lại rằng những hạt sơ cấp được các nhà vật lý phát hiện ra, thuộc ba họ được tổ chức hoàn toàn như nhau với các hạt năng hơn lên, khi chuyển từ họ này sang họ khác. Một câu hỏi bí ẩn chưa có trả lời trước khi có lý thuyết dây, đó là tại sao lại có các họ và tại sao số họ lại là ba? Và đây là đề xuất trả lời của lý thuyết dây. Một không gian Calabi-Yau điển hình đều chứa các lỗ tựa như lỗ ở tâm của đĩa hát hay của chiếc xăm ôtô (hình xuyến) hay một loại "xăm" nào đó có nhiều lỗ hơn, như được minh họa trên hình 9.1. Đối với những không gian Calabi-Yau có số chiều cao hơn, thực sự có rất nhiều loại lỗ khác nhau có thể xuất hiện - ngay bản thân các lỗ cũng có thể có chiều khác nhau (đó là "các lỗ nhiều chiều") - nhưng dẫu sao hình 9.1 cũng đã chuyển tải được ý tưởng cơ bản. Cadanlas, Horowitz, Strominger và Witten đã nghiên cứu một cách kỹ lưỡng ảnh hưởng của các lỗ đó đến các mode dao động khả dĩ của dây. Dưới đây là những điều mà họ đã phát hiện ra.






Hình 9.1. Một xăm ôtô hay một hình xuyến và các "xăm" nhiều lỗ.


Hình 9.1. Một xăm ôtô hay một hình xuyến và các "xăm" nhiều lỗ

Có tồn tại một họ các dao động của dây với năng lượng thấp nhất liên quan với mỗi một lỗ trong phần Calabi-Yau của không gian. Bởi vì các hạt sơ cấp quen thuộc cần phải tương ứng với những mode dao động có năng lượng thấp nhất, nên sự tồn tại của nhiều lỗ - tựa như chiếc "xăm" nhiều lỗ trên hình 9.1 - có nghĩa là các mode dao động của dây sẽ rơi vào nhiều họ. Nếu như không gian Calabi-Yau nhỏ bé có ba lỗ, thì chúng ta sẽ có ba họ các hạt sơ cấp. Và như vậy, lý thuyết dây tuyên bố rằng việc tổ chức thành các họ hạt mà thực nghiệm quan sát được không phải là một đặc điểm có nguồn gốc ngẫu nhiên hoặc thần thánh, không thể giải thích nổi, mà thực ra là sự phản ánh số lỗ trong dạng hình học do các chiều phụ tạo nên! Đây là một loại kết quả khiến cho trái tim của các nhà vật lý phải thổn thức.

Bạn có thể xem rằng số lỗ của các chiều bị cuộn lại tới kích thước Planck - tức vật lý tiêu biểu nhất ở đỉnh núi tự nhiên - giờ đây đã ném được một hòn đá thực nghiệm xuống vùng năng lượng có thể tiếp cận được. Sau hết, các nhà thực nghiệm có thể xác lập - mà thực ra họ đã xác lập được - số họ hạt: 3. Thật không may, số lỗ của mỗi không gian Calabi-Yau trong số hơn một vạn các không gian này lại nằm trên một khoảng khá rộng. Một số không gian có 3 lỗ. Những số khác có 4, 5, 25 và v.v... thậm chí có một số không gian có tới 480 lỗ. Vấn đề là hiện nay không ai biết từ các phương trình của lý thuyết dây làm thế nào rút ra được những không gian Calabo-Yau nào thực sự tạo nên các chiều không gian phụ. Nếu như chúng ta tìm ra một nguyên lý cho phép lọc lựa ra được một không gian Calabi-Yau từ rất nhiều khả năng đó, thì hòn đá ném từ đỉnh núi sẽ tới được trại của những nhà thực nghiệm. Và nếu một không gian Calabi-Yau cụ thể nào đó được lọc ra nhờ các phương trình của lý thuyết mà lại có đúng ba lỗ thì đó là một hậu đoán đầy ấn tượng của lý thuyết dây vì nó giải thích được một đặc tính đã biết của thế giới chúng ta, mà nếu không, đặc tính đó mãi mãi vẫn còn là một điều bí ẩn. Nhưng việc tìm kiếm nguyên lý cho phép chọn ra một không gian Calabi-Yau đến nay vẫn chưa làm được. Tuy nhiên, điều quan trọng nhất là chúng ta thấy rằng lý thuyết dây có khả năng giải quyết được câu đố cơ bản nhất đó của vật lý hạt và bản thân điều đó đã là một sự tiến bộ đáng kể.

Số họ các hạt sơ cấp mới chỉ là một hệ quả thực nghiệm của dạng hình học các chiều phụ. Thông qua tác động của dạng hình học đó đến các mode dao động khả dĩ, những hệ quả khác của các chiều phụ sẽ bao hàm những tính chất chi tiết của các hạt lực và các hạt vật chất. Chẳng hạn, công trình tiếp sau của Strominger và Witten đã chứng tỏ rằng khối lượng của các hạt trong mỗi họ đó phụ thuộc vào cách thức mà các biên của những lỗ nhiều chiều cắt hoặc phủ lên nhau trong không gian Calabi-Yau. Điều này hơi khó hình dung, song ý tưởng ở đây là: vì các dây dao động qua các chiều phụ bị cuộn lại, nên sự sắp xếp chính xác các lỗ khác nhau và cách thức mà không gian Calabi-Yau bao quanh các chiều đó có một tác động trực tiếp đến các mode dao động cộng hưởng khả dĩ của dây. Mặc dù rất khó theo dõi các chi tiết cụ thể và thực tế điều đó cũng không quan trọng lắm, nhưng cũng như đối với số các họ hạt, điều quan trọng là lý thuyết dây đã cung cấp cho chúng ta một khuôn khổ để trả lời cho những câu hỏi mà những lý thuyết trước đó hoàn toàn im lặng, chẳng hạn như câu hỏi tại sao electron và các hạt khác lại có khối lượng như chúng vốn có. Tuy nhiên, lại một lần nữa, việc thực hiện những tính toán như vậy lại đòi hỏi chúng ta phải biết không gian Calabi-Yau nào là các chiều phụ.

Sự thảo luận ở trên đã hé mở cho chúng ta thấy, một ngày nào đó, lý thuyết dây có thể giải thích được những tính chất của các hạt vật chất được liệt kê trong bảng 1.1 như thế nào. Các nhà lý thuyết dây tin rằng một kịch bản tương tự, một ngày nào đó, cũng sẽ giải thích được tính chất của các hạt lực cơ bản liệt kê trong bảng 1.2. Nghĩa là, khi các dây xoắn và dao động lang thang qua các chiều lớn và các chiều phụ cuộn lại, thì trong tập hợp lớn gồm tất cả các mode dao động có một tập con chứa những dao động với spin 1 và 2. Những dao động này là ứng viên cho những trạng thái dao động của dây tương ứng với các hạt truyền tương tác. Bất chấp hình dạng của các không gian Calabi-Yau là như thế nào, luôn luôn có một mode dao động với spin 2 và không có khối lượng; người ta đồng nhất mode này với hạt graviton, tức hạt truyền lực hấp dẫn. Trong khi đó, bản kê chính xác các hạt truyền tương tác có spin 1, chẳng hạn như số lượng của chúng, cường độ của lực mà nó chuyển tải, đối xứng chuẩn mà nó phải tuân theo, lại phụ thuộc mạnh vào dạng hình học cụ thể của các chiều bị cuộn lại. Và như vậy, lại một lần nữa chúng ta thấy rằng lý thuyết dây cung cấp cho chúng ta một khuôn khổ cho phép giải thích được các hạt truyền tương tác, tức là giải thích được những tính chất của các lực cơ bản, nhưng do còn chưa biết chính xác các chiều phụ cuộn thành không gian Calabi-Yau nào, nên chúng ta còn chưa đưa ra được những tiên đoán hoặc những hậu đoán có tính chất quyết định (ngoài ý kiến của Witten về sự hậu đoán lực hấp dẫn).

Nhưng tại sao chúng ta lại chưa thể xác định được không gian Calabi-Yau nào là đúng? Đa số các nhà lý thuyết dây đều buộc tội cho sự chưa tương xứng của các công cụ lý thuyết hiện nay. Chúng ta sẽ thảo luận chi tiết hơn ở chương 12, khuôn khổ toán học của lý thuyết dây phức tạp tới mức các nhà vật lý chỉ có thể thực hiện những tính toán gần đúng dựa trên một phương pháp gọi là lý thuyết nhiễu loạn. Trong sơ đồ tính toán gần đúng đó, các không gian Calabi-Yau đều xuất hiện bình đẳng với nhau và nhờ các phương trình chúng ta không chọn được ra một không gian Calabi-Yau duy nhất nào. Nhưng vì những hệ quả vật lý lại phụ thuộc rất nhạy cảm vào dạng cụ thể của các chiều bị cuộn lại và việc không có khả năng chọn lựa được một không gian Calabi-Yau duy nhất trong số hàng vạn các không gian đó, nên chúng ta chưa thể rút ra những kết luận quyết định có thể kiểm chứng được bằng thực nghiệm. Một trong những động lực thúc đẩy các nghiên cứu hiện nay là cần phải phát triển một phương pháp lý thuyết vượt lên trên các phương pháp gần đúng với hy vọng, ngoài những lợi ích khác, chúng ta sẽ chọn ra một không gian Calabi-Yau duy nhất cho các chiều phụ. Chúng ta sẽ nói tới những tiến bộ theo phương hướng này trong chương 13.
[1] Nói như thế, nên ghi nhớ khả năng được chỉ ra trong chú thích 5 của chương 6 rằng các dây có thể dài hơn lúc đầu ta tưởng rất nhiều và do đó chúng có thể quan sát bằng thực nghiệm trong các máy gia tốc vài chục năm tới.

<< Chương 9 - 2 | Chương 9 - 4 >>


Dành cho quảng cáo

©2007-2008 Bản quyền thuộc về Liên Mạng Việt Nam - http://lmvn.com ®
Ghi rõ nguồn "lmvn.com" khi bạn phát hành lại thông tin từ website này - Useronline: 873

Return to top